

By: Jeremy DeGeyter Kristin Van Sciver Matt Snyder

"Fear Nothing" Motto

- Goal: Improve across the board

 - o Paddling
 o Fundraising
 o Concrete Mixture
 o Post-Tensioning Application
 - o Aesthetics

Figure 1: 2015 Canoe Team

Figure 2: Practice Races

Figure 3: Paddle Practice

Hull Design

- Shallow Arch Bottom
- 5-in rocker
- 21-ft long, 27-in wide
- Prolines
 - o Optimum Speed 5.4 knots (6.2mph)

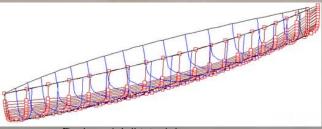


Figure 4: Prolines Hull Model

Structural Analysis

- Max moment of 4-lbin/in
 - o Two person loading analysis
 - o Transverse direction
- · Capacity of 30-lbin/in
 - o Based on one layer reinforcement
 - o Does not include ribs

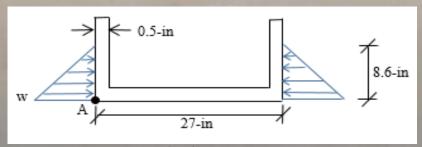


Figure 5: Transverse Free-Body Diagram

Concrete Mix

- Final Consituents:

 - o EkkoMAXX o Poraver (0.5 mm-1 mm)
 - o 3M Glass Bubbles (S32)
 - o MasterFiber M 100
 - o MB-AE 90 Air Entraining Admixture

• What is EkkoMAXX?

- Sustainable alternative to Portland
- 100% fly ash based
- Resistant to chemical attack
- Reduced shrinkage
- First time used for concrete canoes

7able 1: Final Mix Properties

Final Concrete Structural Mix:	
Wet/Dry Unit Weight	65.5/57.4 pcf
28 Day Compressive Strength	2150 psi
28 Day Tensile Strength	225 psi
28 Day Flexural Strength	725 psi

Figure 6: Concrete Mix

Mold Construction

Figure 7: Cross-Section Cutout

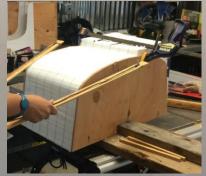


Figure 8: Hot-Wire Cutting Foam

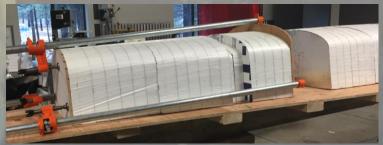


Figure 9: Gluing Cross-Sections

Figure 10: Finished Foam Mold

Hour Day

Figure 11: Spraying Concrete Layers

Figure 13: Placing Post-Tensioning

Figure 12: Troweling Concrete Layers

Figure 14: Placing Reinforcement Mesh

Post-Tensioning

- Provides 690-lbs of axial compression to increase flexural cracking load
- Six-7x7 galvanized steel tendons were placed symmetrically about the centroid
- Designed for 115-lbs of tension after calculated losses

Figure 15: Tensioning System

Figure 16: Anchorage System

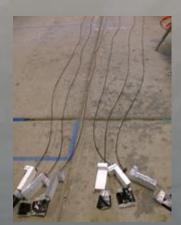
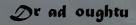



Figure 17: Post-Tensioning Net

Curing and Finishing

Figure 18: Curing Frame

Figure 20: Sanding

Figure 19: Curing Tent

Figure 21: Staining

Aesthetics

Figure 22: Silicone Rib Mold

Figure 23: Rib in Canoe

Figure 24: 3D Elements in Bulkhead

Figure 25: Arizona Flag Stain

Figure 26: Flagstaff Night Sky Stain

Presenting...

Dreadnoughtus

Questions?

